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! ABSTRACT

The consistency and asymptotic normality of a linear least squares
estimate of the form (X‘X)‘X'Y when the mean is not X8 is investigated in
this paper. The least squares estimate is a consistent estimate of the
best linear approximation of the true nean function for the design chosen,
The asymptotic normality of the least squares estimate depends on the design
and the asymptotic mean may not be the best linear approximation of the true

mean function,
\,

Key words: Consistency, asymototic normality, best linear approximation,

model robustness.
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Linear Least Squares Estimates
and ‘lonlinear Means

1. Introduction

In the standard linear models theory, the mean of an observation vector

Y is given Xg where X is a known matrix of constants and g is an unknown \
vactor of paraneters. The estimate é a (X“X) X“Y, where (X“X) is a pgen- |
eralized inverse of X°X, has many well-known and desirable properties. Con-

sidering that both regression and analysis of variance nroblems are part

of the linear models theory, estimates like ; are among the most widely used

of all parameter estimates.

If the nean of Y is not Y8, the properties of a are not described by
the standard linear models theory. Indeced, it may not be clear what (if
anything); is estimating. The behavior of é for larpe samples when the mean
is not XB is investigated in this paper. This behavior is found to depend
on the design used in the experiment. But, for a given design, é is shown
to estimate the best linear apnroximation of the true mean function in a sense
to be defined.

In Section 2, the model and notation are defined. In Section 3,5 is
shown to be a consistent estimate of the best linear approximation. The
asymptotic norrality of é is investipated in Section 4, Section S contains
some exarmles.

Other authors have considered questions related to those addressed herein.
The question of model robusiness'’', what é is estimating i the mean is not
XB, has heen investipated Ly authcrs such as Box and Draner (1959), Atwood
(1971), Stinler (1°71) and Huber (17°75). These authors considered specific

alternative mean functions to X8. Rovall and llerson (1973) have described

the mean of 8 for an arbitrary mean function. Surnrisingly recently other
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authors such as Drygas (1976), Lai, Robbins and Wei (1978), Anderson and
Taylor (1979) and Wu (1981%) have considered the consistency of 8 under

various conditions, but always under the assumption that the mean is Xg.

2. ‘todel and Notation

Let ¥ dencte a subset of an r-dinensional Euclidean space (r 2 1).
X is the set of possible values of the independent variable x. A design for
a sample of size n is a specification of n points, xl,n"""xn,n~’ from X
where the n vnoints specify the values of the independent variable at which
observations are to b»e taken, The xi,n need not be all distinct. If a
point x is repeated p times then p observations are taken at x, A design
can be completely described by a discrete probability measure En on X

where the nrobability En assigns to a point x is the proportion of the n

gbservations to be taken at x, En will also be called the design.

The observaticn vector is Y = (Y seees Y )7 . It is assumed that
n 1l,n n,n
for each n
Yin = ™%n ) * &0 1=1,...,m,

where m, the unknhown mean function, is a real-valued bounded and continuous

function on X and e, M= L2051 =1,...,n, are identically distributed

»

randon variables with mean zero and variance 02. It is also assumed that

1,0 are independent for each n = 1,2,,., . Thus Yl,n""’yn,n
2

are inderendent random variables with [ Yi n m(xi n) and variance o,
b

Let £(x) = (fl(x),..., fn(x))' denote a p x 1 vector of real-valued,

€

€
'"n,n

seve X

boimded and continuous functions on X. For a given design, x non’
»

1,n

let Xn be the n x p matrix with (i, j)th element fj(xi ﬂ). The asymptotic
Y

~

behavior of the estimate 8_ = (x;xn)_k;Yn will be investigated in this »raper,
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Bn will be called a linear least squares estimate since, for a given

observation yn = (y1 n,...,y )”, Bn is the vector B which minimizes
»

n,n
n - 2 P . -, . .

§i=1(yi,n B8 f(xi,n)) . Conditions under which X X is non-singular and
Bn is uniquely defined are given in Lemmas 3.1 and 3.4.

Let £ be a probability measure on X. A p X 1 vector B(n,E) will be called

a best linear approximation of m(x) if
[(m(x) - B‘(m,E)f(x))sz(x) = igf [(m(x) - B‘f(x))zdﬁ(x). (2.1)

Since B(m,E) depends on the unknown mean function m, f(m,£) is a parameter.
Let M(&) denote the p x p matrix with (i,j)th element ffi(x) fj(x) dE(x) and
let c(g) denote the p x 1 vector with (i)th coordinate ffi(x)m(x) dg(x). In
optimal design theory (see, e.g., Kiefer (1962)) a multiple of M(£) is called
the information matrix of £. If H(gn) is non-singular, czn-lﬂ—l(g) is the
covariance matrix of En. By equating the partial derivatives

af(m(x) - B‘f(x))zdg(x)/aej, i=1,...,n, to zero it is easily verified that
if M(g) is non-singular then g(m,£) is unique and equals M'l(s)c(e). Under
conditions relating a sequence of designs En to £, it will be shown that En
is a consistent estimate of g(m,&) and én is asymptotically normal with mean
B(m,g). In this sense, the best linear approximation B(m?g) is the parameter
being estimated by the linear least squares estimate én when the mean m(x) is

not necessarily linear.

3. Consistency

Let En be a fixed sequence of designs for sample sizes n = 1,2,... .

Throughout it will be assumed that En converges weakly to a probability measure
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€ where weak convergence is defined in Billingsley (1968). The main result
in this section, the proof of which is deferred until the end of the section,
is the following theoren.

Theoren 3.1: If . (¢£) is non-singular, then én is a consistent estimate
of g(m,g) in tlat the random vectors En converge in probability to the real-
valued vector B(m,g) = H'l(g) c(g).

It is important to note that the parameter g(m,£) which én estimates
depends on ¢. The experimenter chooses ¢ when the sequence of designs
1> Egseee is chosen. g should be ciiosen so that the definition of best
linear approximation in (2.1) accurately reflects how the experimenter wishes
to measure the closeness of g°f(x) to m(x). If the support of f consists
only of a finite number of points, 3“f(x) will be compared to m(x) only at
these points in determining g(m,g). If the aim is to estimate a g so that
p°f(x) is close to m(x) for all x in X, a choice of a § whose support is all
of X, e.g., uniform on X, scems more appropriate. In optimal design theory
(see, e.g., Kiefer (i€59) or Karlin and Studden (13966)) the optimal design
often has a support with a finite number of points. These designs may not
be very appropriate if the mean m(x) is npt of the form B"f(x). The fact
that what én is estimating denends on the design if m(x) # B°f(x) has
teen recognized previously. See, for cxample, Draper and Smith (1966, Chapter
2, Section 12) or Royall and Herson (1973).

The following lemma gives a condition under which 1i(g) will be non-

singular. The functions fl(“),...,fp(x) are called linecarly independent - £
if, for a p x 1 real-valued vector a,a”f(x) = 0 a.s. £ imnlies a = 9.

Lerma 3.1: If fl(x),...,fp(x) are linearly independent -g then }M(E)

is non-singular.

ooy
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Proof: Leto beapx 1l real-valued vector. Assume M(g)g = 0. To
shiow {1(€) is non-singular it suffices to showa = 0. !'(§)a = O implies
9 =87i()a = [(a"€(x))%dE(x). This implies o“f(x) = 0 a.s. £. Since
fl(x),..., fp(x) are linearly independent -£, a = 2. ||

To study the asymptotic behavior of Bn, it is useful to note that

w
]

= (X°V )X .
(X v XY (3.1)

-1 ” - '1 . '1 - - -lvO
(n ann) (n XnFn) + (n Xan) (n lnmn)
where e, = (‘l,n""’

behavior of n-lX;e

n)‘ and n, = (m(xl,n)""’ m(xn n))’. The asymptotic

en, ’

. n-lx‘m and n'lx‘x is described in the following three
n nn n"n

lemmas.

1

Lerma 3.2: Under the model the random vectors n_ X;gn converge in

probability to 9.

Proof: 1t suffices to show that for any 6 > 3,

lim P(]2? . f (x

=0 £ =
i=1 fr i,n)ei,nl >n §) 0 forr =1,...,p. (3.2)
Naw

Let a = max sup fz
1srsp ¥ T

6§ >0, By Chebyshev's Inequality and the fact that € 0’ €0 are uncorrelated
3 2

(x). Since the fr are bounded, a < ». Fix

with mean zero,

n

POl £.0x 4
2.0 .2 2.2 2 . '

= g zi=1 fr(xi,n)/n §“ g0 a/néz. Thus Equation (3.2) is true.ll

Ye. _[> ne) s BV £ (x. Je. )2/ns
i.n i=1 r"i,n’%i,n

For the sake of completeness it should be noted that the result of Lemna

3.2 and hence the consistency result of Theorem 3.1 holds under the condition

that for each n, ¢

l,n""’e are uncorrelated with means all zero and variances

n,n

all bounded above by 2. The stronger condition that € p*rrer€, o are iiild,
’ 1

is not necessary.
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Lemma 3.3: Under the assumptions of the model, 1lim n'lx‘m = c(g).
—— N0 nn

Proof: Coordinatewise, this result is

. -1 _n _ =
%13 n zizlfr(xi,n)m(xi,n) = f fr(x)m(x)dg(x), r=1,...,p. (3.3)
-1 n _
Note that n ey fr(xi,n)m(xi,n) ..Ifi(x)m(x)dgn(x).

Since fr and m are bounded and continuous and gn converges weakly to £ , Equation

(3.3) is true.||

Lemma 3.4: If M(g) is non-singular then (i) lim n'lx;xn = H(E),
N+
(ii) n'lxr‘lxn is non-singular for all sufficiently large n and

S NSRS I
(iii) ;13 (n xnxn) = 17 (§).

Proof: CEClementwise, statement (i) is
. -1 .n = =
im a0 B0 £ (g ) £(x ) = ffr(x)fs(x)decx), r,s=1,...,p. (3.9)

we
Note that n =~ I f (x. O)f (xi,n) = ffr(x)fs(x)dﬁn(x)-

i=1 r*"i,n’"s
Since fr and fS are bounded and continuous and En converges weakly to §,

Equation (3.4) is true.
Since the determinant is a continuous function, by (i),

1im Jn"1°X | =| H(E)| # 0. Thus (ii) is true.
o) nn
If A and A are non-singular matrices and lim A = A, then lim A;l =l
Tbo

N>
By (i) and (ii), n'lx;xn is non-singular for all large n and (iii) is true.ll

Proof of Theorem 3.1: This theorem follows from Equation (3.1) and Lemmas

3.2, 3.3 and 3.4.||

4. Asymptotic Normality

In this section, the asymptotic normality of nl/z(sn - g(m,g)) is investi-

gated. As in Section 3, it is assumed that En is a fixed sequence of designs

for sample sizes n = 1, 2,... whiwh converges weakly to a probability measure

£ . The asymptotic normality result is given in Theorem 4.1.
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Theorem 4,1: Assume M(g) is non-singular. Let mo= (m(x1 n),-.-. m(x  )):
’

. n,n
) - 2 1/2 ’ v - .
Assume that %ig n ((anﬁ) Xnnn - B(m,£)) exists and equals the p x 1 vector

172, o j
b. Then n /2(en -g(n,g)) converges weakly to a multivariate normal random vector
with mean b and covariance matrix cﬁﬂ'l(g)_ !
- i
Proof: Let Tn = n 1/2x;ew. Hlote that : L
/2.2 O B /2 v .
nlT(e - B(mE)) = (o TXEX) T+ T T(OCX ) Xmo - 8(m,E)). (4.1)

By assumption, the last term converges to b. By Lemma 3.4, %ig (n-1X£xnf—= H_I(E). ;

S So to prove the desired result it suffices, by an extension of Slutzky's Theorenr

K (Billingsley (1568), Tieorem 5.5), to show that the random vectors Tn converge

: weakly to U where U is a p-dimensional multivariate normal random vector with
f mean 0 and covariance matrix czﬂ(g).
<
¥ To prove the convergence cf T‘1 to Y, it suffices, by the Cramer-Wold device
M 1
¥
_ ; (Billingsley (196&), r. 48), to slow that a‘Tn corverces weakly to a”’U for all
T ) . -1/2
: -di s o s a, F n., et W, = ’ . . . Then
, p-dimensional voctors Fix o # L i n (a f(xJ,n))ej,n
- n ! 3 £3 1 . n 1 L
= . ] t f ¢ shew ¢! . . converges weakly to o-U.
a Tn Zj:l j,n o it suffices tc shcw that £J=1 in g y o
By the definition of ej o ”1 ntt w“ n arc indevendent random variables with
X > 1y
. -1 . 22 .
i zero means and variances resnmectively equal to n “(a f(xj “)) g . Thus it
- suffices, by the Nermal Central Limit Theorerm (Loéve (1963), p. 288), to show that
SR . n g 2
' in . [ = g a"t(E)a 4.2
- %*w 2J=1 ;-0 (€) (4.2)
and that
. n . . 2
n L ECY, IQw, _|> 86 = 8 > .
DEL I ( i ( ]’nl ))° = 0 for all 9 (4.3)
where I is the indicator function.
-
-~ . " ; , n i 2, -1,
To verify Cquation (4.2) note that Zj-l E'ﬂi n =g o’ (n ann) a. By Lemma
= ALY
-1 .
. oo = . . 5 )
3.4, %lﬂ (n xnxn) 1:(§) so LEquation 4.2 is true
Finally to verify [quation 4.3, let E = sypla‘f(x)l. Since tae fi are
bounded, B < «. Fixé§ > 0. Sincee Ln’ " *€an are i.i.d. random variaules,
3 sty
.l
3,
?)

e e e ———— — ——— pa— —_— . e — T
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n I, EWS .
lim I EWS | I(|WJ,nl> §)

1
27— -1.n .2 1/2,-1
$ B% limn © £, Eel T(|es (>6n7""B )

2 — 2 1/2 -1
B° 1lim E¢ 1.1 I(|€1,1| >sn/p )

0.1

In theorem 4.1, tie asymntotic mean b depends on the unknown function
n(x). In order for Theoreri 4.1 to be useful for raking large sample inferences
about g(m,£), say to construct confidence sets for g(m,§), b must be zero for
all bounded, contiiuous functions m(x). Lemnas 3.3 and 3.4 show that (X;Xn)—Xgmn
converges to g(m,g) for all bounded, continuous m(x). It is reasonable to expect
that b = 0 if g, converges to £ fast enough in some sense. Conditions under
which this is true are examined in the remainder of this section. A useful
result in this regard is given in Corrollary 4.1. It should be noted that one
important situation in which b = 0 is if m(x) =B”"f(x) for some B . In this
case (X;xn)_kgmn = = B(m£) for all large n.

To simplify notation, for the remainder of this section assume that X = (u,v)
an interval on the real line. Similar resulits hold if x is a r-dimensional
vector. Let gn(x) and E(x) also denote the distribution functions of the pro-
bability measures gn and & Assupe therc is a fuanction h(x) such that
%iﬂ nl/z(gn(x) - E(x)) = h(x) almost evervwierc with respect to Lebesque
measure on (u,v). Assume thut fz sup nl/zlin(x) - E(x)!dx < =, Assume the
functions m, fl""’ fn are differenciablec on (u,v). Let g~ denote the deriva-
tive of a functior g. The mean vector b in Theorem 3.1 can be written in terms
of the function h. To obtain this result, the followinp lemma will be used.

Lemma 4.1: Let ¢(x) be a real valued function defined on (u, v) with a

derivative $“-and let G(x) be a distribution function with support contained in

N

s

Gl it i i,
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(u, v). Then

[V 660 = [V 47 (x) (1 - G(x))dx + g(u). (4.4)

Proof: [V ¢(x)dG(x) = [' [To*(u)du dG6(x) + ¢(u).
Equation 4.4 follows from Fubini's Theorem (Loéve (1963), p. 135) by inter-
changing the integration order..|

The next theorem gives an expression for the mean b of Theorem 4.1 in terms
of matrices which depend on the function h. Let 4 denote the p x 1 vector with
{1)t)h coordinate -IZ (fi(x)m(x))‘h(x)dx. Let D denote the p x p matrix with

(i, j)th clcrent fZ(Ti(x)fj(x))‘\(x)dx.

Theorem 4.2: Assume {‘(£) is non-sirgular. Then b = H°1(5)(d + Dm'l(g)c(g)),

-1, . .
Prcof: Let A'l =n "X Xﬂ. 3y Lerma 3.4, A is non-singular for all large
_—— i n F .‘l

n so we shall write A;l for A:

b = lip at/? (A;l(n'lxgmn) - ) e(E)
. 1/2. -1, -1 a1 a1
- 1in n%/ (@ X - c®)) ¢ (A - T (E)eE).

To prove the desired result it suffices to prove that

. 1/2,-1, -1.. -1
%33 nooA (n A - c(g&)) = 1t “(&)d. (4.5)
and
. vz 1 -1 -1 ~1
g a0 ot rhEne® = e e, (4.6)
By Lemma 3.4, %13 A;l = M'I(E). Thus to prove Equation 4.5 it suffices to
show that
. 1/2 v v
im0 £ on()dg () - [ £ (On(x)dE())

1/2

= -lin fi (£, 0m(0) 0 72 () - £(x))dx (4.7)

- fx (fr(x)m(x))‘h(x)dx, r=1,...,n.

The first equality is true by Lemma 4.1 and the second equality is true by the

. 1/2
assumptions made about n /

(gn(x) - g(x)) and the Dominated Convergence Theoren

o




11
(Loéve (1963), p. 125).

SRS TS S GO | .
Note that A "~ * "(E) = A () A (). By Lenma 3.4,
%15 K;1= “—l(é). Thus to prove Equation 4.6 it suffices to show that
. 1/2 ;
up ' gV s eaE 0 e - Y EL0E (0 & ()
i s \% - 1/2 _ o
o = Lp [ (E.f,(x)) Y7 (€, (x) -£09)dx (4.8}

= jX (£.00F ()X, ©=1,...,p5 s = 1,..., D,

Ny

The first equality is true by Lemma .1 and the second equality is true by the

= assumntions made about nl/z(én(x) - £({x)) and the Dorminated Convergence Theorem.]

i : 1/

Corrollary 4.1: Assume ti(g) is non-singular. If %15 n

26,0 - £(x) = 0

1/2 -

almost everywhere with resnmect tc Lebesque neasure on (u, v) then n (gn - 8(m,t))

converges weakly to a multivariate norrol randorm vector with mean ) and covariance

.
3 matrix OZK'I(E).
; Proof: h(x) = Lip /3¢ _(0 - £(x) = 0 a.e. implies ¢ = 9 and D = 0.
i Thus by Theorem 4.2, the mean b in Theorem 4.1 is 0.||
5. Examples
In this section two examples are considered. In the first example a fairly
feneral method of constructing designs which satisfy the conditions of Corollary
. 4.1 is given. The second example gives a sequence of designs for which the

functiorn h(x) is non-zero.
Exanple 1: Let £{x) be a fixed continuous and strictly increasing distri-

. . . . -1 .
bution function on the rcal line. Let £ “(x) denote the inverse of g(x). Let

LN

Ty Mgyeee BNC T, 1,0 be sequences of positive integers such that n.l/mi

7 A
1/2

is an integer for each i ant lim 1 /n; 0, For k =1,..., n./m, , let
10 17771 i

. -1 -1
Ri ! - 1 K .
I, ; denote the interval (g ~((k l,hi/ni), £ (xri/ni)) Let £ denote any

. Ny

design with n. observations in each of the intervals I, .. Then & . converges
1 , ni )
ron b : . . /2
weakly to £. Turthernore, syp l& (x) - E(x)l < mn./n.. So since lim m./n?‘" = n
h'¢ N 11 1+ 1 i ’

1
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%iﬁ ni 2(&ni(x) - &(x)) = 0. By Corollary 4.1, the mean vector in Theoren:
4.1 is zero for a sequence of designs constructed in this way. A special
case of interest is the case of m, = 2t for some fixed % and n, = i,
Example 2: tlere is an example of a sequernce of designs for which the

1(x) function is non-zero and, by Thcorem 4.2, the mean vector b in Theorem

4.1 is not zero Tor all mean functions m(x). Let [u, v] = [0, 1] and let

-

£ be che unifornm Adistribution on [?, 1]. Let n; = i fori =1, 2,... . Let
.2 . .
En be the design which tales one chservation at each of the i” - i noints
L 2 2 . . -
/i + k/i°, v = °,1,..., i“ - 1 - 1, and i observations at 1. For each i,

x - 1/i < £, (x) s x for all x ¢ [N, 1] so £ (x) converges to g(x). But

i i "
for any i and any x ¢ (1/i, 1), -1/i < gq (x)- E(x) < -1/ + 1/i°. Thus for all
- i
x e (0, 1), h{(x} = 1lim n¥/“(£ (x) - £§(x)) = limi(g_ (x} - E(x)) = -1. Supnrose

fl(x) =1 ¢ £,(x) = x. Sunpose m(x) = x”, Then using the result of Theorem

4,2, the mean vector > can be calculated to be b = (-1, 2)7

aomth e

[ YA YA o Y- AU W WS Ipe )

L Rl Y sgke:

i



e ——— e

———— e ———

13

References

Anderson! T.W. and Taylor, J.B. (1979) Strong consistency of least squares
estimates in dynamic models, Ann. Statist., 7, 484-489,

Atwood, C.E. (1971) Robust procedures for estimating polynomial regression,
JASA, 66, 855-860.

Billingsley, P. (1968) Convergence of Probability Measures, John Wiley § Sons,
Inc., New York.

Box, G.E.P. and Draper, N.R. (1959) A basis for the selection of response
curve design, JASA, 54, 622-654,

Draper, N. and Smith, H. (1966) Applied Regression Analysis, John Wiley & Sons,
Inc., New York.

Drygas, H. (1976) Weak and strong consistency of least squares estimators in
regression models, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 34,
119-127.

Huber, P.J. (1975) Robustness and desipgns, A Survey of Statistical Design and
Linear Models, J.N. Srivastava, ed., North Holland Pub Co., Amsterdam,
287-301,

Karlin, S. and Stud a, W.J. (1966) Optimal :xnerimental designs, Ann. Math,
Statist., 37, 783-815.

Kiefer, J. (1962) Two more criteria equivalent to D-optimality of designs,
Ann. !lath. Statist., 33, 792-796.

Kiefer, J. and Wolfowitz, J. (1959) Ovntimum desipns in regression problems,
Ann. Math. Statist., 30, 271-294.

Lai, T.L., Robbins, H. and Wei, C.Z. (1978) Strong consistency of least squares
estimates in nultiple regression, Proc. Natl. Acad. Sci., USA, 75,
3034-3036.

Loeve, M. (1963) Probability Theory, 3rd Edition, D. Van Nostrand Co., Inc.,
Princeton.

Royall, R.M, and llerson, J. (1973) Robust estimation in finite ponulations I,
JASA, 68, 880-889.

Stigler, S.M. (1971) Cptimum cxnerimental design for polynomial regression,
JASA, 66, 311-318.

Wu, C.F. (1980) Characterizing the consistent directions of least squares
estimates, Ann. Statist., 8, 739-801.

e ————

noguugs.~ 7 Eampanc




! .
NN T WP G NP ——

~ Ay

SECURITY CLASSIFICATION OF THIS PAGE

NEPORT DOCUMENTATION PACE

i 1'

REPORT NUMBER 2. GOVT ACCESSION NO. ! 3. RECIPIENT'S CATALOG NWMBER

4.

i
FSUoNo,, 11573 |
CRRe . 625000 | AD-ApaK 169

5. TYPE OF REPORT & PERIOD COVERED

TITLE (and subtitl ,
Tecknical Remnort

Linear Least Squares Estimates and
wonlinear i‘eans FSU Statistics Report ! 573

6. PERFORIING ORG. REPORT NUMBEK

7.

AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

AFOSR 78-3678

2.

PERFCRIMING CRGAMIZATION NAME AMD ADDRESS

The Florida State University
Department of Statistics
Tallahassee, FL. 22300

10. PROGRA!M ELIIIENT, PROJECT, TASK AREA
& YWORK UNIT NUMBERS

|
T
|
|
I
|
Roger L. Berper , Naftali A. Langberg : USARC DAAG 29-79-C-0158
[
|
|
|
[

11. COUTROLLIIIC OFFICE NAME AND ADDRESS 12. REPORT DATE
U.S. Arny Research Office-Durham, P.0O. Box 12211 ‘farch, 1981
Research Triangle Park, NC 27700 13, NUIIBER OF PAGES
U.S. Air Force, Air Force Office of Scientific | 13
N¢gsearch, Bollinpg Air Force Base, D.C, 20332 [15. SECURITY CLASS. (of this report)
tnclassified
14. lonitoring Agcncy Name § Address (if 15a. DECLASSIFICATION/DOWNGRADING

}
I
different from Controlling Office) | SCHEDULE
|
|

16,

DISTRIBUTION STATEMENT (of this report)

Approved for public release; distribution unlimited

17.

DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from report)

18,

SUPPLEMENTARY NOTES

12,

KEY VORLS
Consistency, asymptotic normality, best iinear approximation, model robustness.

ABSTRACT (Continue on reverse side if necessary and identify by block number)

The consistency and asyriptotic nermality of a linear least squares estimate
of the form (X“X) X°Y when the mean is not XB is investigated in this paper. The
least squares estimate is o consistent estimate of the best linear approximation of
the truc mean function for the design chosen. The asymptotic normality of the least
squares estimate depends on the dcsign and the asymptotic mean may not be the best
linear approximation of the true mean function.







